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LETTER TO THE EDITOR 

A long-range Domany-Kinzel model of directed 
percolation 

T C Li and Z Q Zhang 
Institute of Physics, Chinese Academy of Sciences, Beijing, China 

Received 7 June 1983 

Abstract. A long-range Domany-Kinzel model proposed by Wu and Stanley is solved 
using random-walk formulations. In this model, for every site ( i ,  j )  in a two-dimensional 
lattice there is a directed bond present from site (i, j )  to ( i  + 1, j )  with probability one. 
There are also m + 1 directed bonds present from ( i ,  j )  to ( i  - k ,  j + l), k = -1, 0, 1, 2, 
3. . .m - 1 with respective probabilities pt+l  where m is any positive integer. An exact 
expression is obtained to determine the critical percolation angle 8, for any distribution 
of p.. The system percolates in the region 8, > 8 3 0 with probability one and zero outside 
this region where 8 is the angle measured from the x axis. If we let m go to infinity and 
p n  varies as pln-’, we find that when sc2, BC= 7. A closed form expression of BC is 
obtained for s + 2 .  When m is large but finite, 8, is also obtained for the following two 
distributions: (a) pn = a / ( a  + n )  with a > 0, (b) p .  = P/m and p > 0. 

Directed percolation has been the focus of much attention in the past few years. This 
is not only because it forms a new universality class with anisotropic scaling but also 
because of its close relationship to the Reggeon field theory in high-energy physics 
and the Markov process with breaking, recombination and absorption that occur in 
chemistry and biology, etc. (For a review see Kinzel (1982).) In two dimensions, 
various methods, like series expansion (Blease 1977, Essam and De’Belll981, De’Bell 
and Essam 1983), Monte Carlo (Kertesz and Vicsek 1980, Dhar and Barma 1981), 
and finite-size scaling (Kinzel and Yeomans 1981, Domany and Kinzel 1981) have 
been performed and much progress has been achieved. 

Recently, Domany and Kinzel (1981, hereafter referred to as DK) proposed a 
particular two-dimensional solvable model. For every site (i, j )  in a square lattice, 
they considered the case when a horizontal directed bond is present from (i, j )  to 
(i + 1, j )  with probability pH = 1 and a vertical directed bond is present from (i, j )  to 
(i, j + 1) with probability pv = p (figure 1). Let P(R, p )  be the probability that a site 
R = (N, L )  is connected to the origin. DK found that for large R there exists a critical 
percolation angle B C ( p )  such that the system percolates in the region @,>e 3 0  with 
probability one and zero outside this region, where 8 =tan-’ (LIN) .  When e > ec 
they also found that the correlation length exponent v = 2. More recently, Wu and 
Stanley (1982, hereafter referred to as ws) were able to reformulate the Domany- 
Kinzel model in terms of a random-walk problem using the fact that a unique path 
can be singled out for each percolation configuration. This reformulation greatly 
simplifies the problem. ws not only solved the case of a triangular lattice but also 
suggested that a long-range Domany-Kinzel model can be worked out using these 
random-walk formulations. 

@ 1983 The Institute of Physics L40 1 
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Figure 1. Directed percolation in a square lattice 
with pH = 1 and pv = p .  

Figure 2. Directed percolation with pH = 1. There 
are other m + l  directed bonds OAo, 
OA I ,  . , . , OA, being present with respective prob- 
abilities p o ,  p l ,  . . . , p,. 

For this long-range model, in addition to a directed bond being present from site 
(i, j )  to (i + 1, j )  with probability one for every site (i, j ) ,  there are m + 1 directed 
bonds present from (i, j )  to (i - k, j + l ) ,  k = -1, 0, 1, 2, . . . , m - 1 with respective 
probabilities pk+l  where m is any positive integer (figure 2). Fr'om figure 2, it is easily 
seen that the largest 8, one can have is tan-'[l/(l -m)]. This occurs only when pm = 1. 
When m becomes infinite and limm+m pm = 1 we certainly have 8, = T. However, this 
is a rather uninteresting case. What is more interesting is the following. Under what 
circumstances can one still have 8, = T even when limm+m pm = O? If we let pn decay 
like pln- ' ,  will a critical s, exist such that when s Gsc,  6, = T? In this case, the fact 
that 6, approaches T must be attributed to the cumulative contributions of an infinite 
number of bonds. This problem has something similar to the one-dimensional Ising 
model with a long-range interaction J ( n )  which decays like n - s  (Dyson 1969), or the 
one-dimensional percolation model with long-range bonds pn which decay like n -' 
(Zhang et a1 1983). For both cases, the ordered states stemming from long-range 
interactions are found at sc = 2. 

In this letter, we work out this long-range Domany-Kinzel model explicitly. Some 
exact results are presented. In particular, we find that sc is again equal to 2. When 
m is large but finite, we also discuss two specific distributions of pn. 

First we consider the case when m is finite (figure 2). Following ws, we single out 
a unique path for every percolating configuration from 0 to R by the following 
procedure. Starting from 0 one traverses along the OA, bond if it is present. If the 
OA, bond is not present then one traverses along the OA,-l bond if it is present, 
etc. If all the m + 1 bonds (OA,, OA,-l . .  . , OAI and OAo) are absent then one 
traverses horizontally along the OH bond. This process is repeated at each new site 
until one reaches R. Thus the unique path singled out by this procedure is the left- 
most path connecting 0 and R in every percolating configuration. A random-walk 
problem can then be formulated. At every site, a walker can only walk along the 
following m + 2 directed bonds OA,, OAmPl . . . , OA1, OAo and OH with respective 
probabilities p", B m - l r . .  . ,cl, bo and fiH, where bm =pm, dm-l =4,,,pm-1, bm-2 = 
qmqm-1Pm-2, - a ,  Fo=qmqm-i . . .41po9 FH = q m q m - i  . . .4140 and 4i = 1 -pi for all i = 
0, 1,2,  . . . , m. Using the standard method (Montroll 1964), the probability Wn,L-l 
that a walker will reach site (n, L - 1) from (0,O) is given by 

7 7  

(1) 
dcp1 dcp2 exp[-incpl -i(L - 1)4021 
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Following ws, the probability P(R, p) (p = (PO, pl,  . . . , p,}) that R is connected to 
the origin is related to Wn,=-l by 

N-1 

P ( R , p ) = ( l - q m q m - l  a .  . q I q O )  1 W n , L - 1 + ( 1 - q & m - l * .  * q Z q l ) w N , L - l + * . *  
n = (1  -m)(L- 1)  

+ ( I  - q m q m - l ) W N + m - 2 , L - l  + ( I  - q m ) W N + m - l , L - l .  (2) 
The above equation is just the straightforward extension of equation (4) of WS. To 
evaluate ( 1 )  and (2), we follow exactly the same analysis as given by ws. Here, we 
will skip all the derivations and only present the following results. Let a = 
N/L (R = (N, L ) ) ;  we find that when R is large 

P ( R , p )  = 1, a > a c ( p ) ,  

= 0 ,  a < a c ( p ) ,  

a = a c ( p ) ,  (3) 

4 p )  = X ( p ) / 9 ( p )  (4) 

X ( p ) = q m + q m q m - 1 + .  * . + q m q m - l  * q 2 q l - ( m - 1 ) ,  ( 5 )  

9 ( p )  = 1 - 4 m q m - l q m - 2  * * . q2qlqO.  (6) 

The critical percolation angle & ( p )  is thus equal to tan-'[a,'(p)]. When pm = 
1 ( q m  = O),  from (4)-(6), we indeed obtain e,= tan-'[l/(l -m)]. For a < a , ( p ) ,  we 
also find that P(R,  p)  -exp(-R/[(p)) with [ ( p )  - [ a c ( p )  -a]-2. So, the critical 
exponent p = 2 remains unchanged if any finite number of further neighbour directed 
bonds are added to the system. This is consistent with the universality concept. 

The results (4)-(6) can be seen directly using the random-walk displacements. In 
the random-walk formulations, every walk from 0 to R = (N, L) represents the 
leftmost path of certain configurations in which all the sites (M, L) with M > N  are 
connected to the origin while those with M < N  are disconnected from the origin. If 
(x) and ( y )  are respectively the average random-walk displacements along the x and 
y directions, when R is large, a c ( p )  is thus ( x ) / ( y ) .  More explicitly, 

1 - -  - 2, 

where 

with 

m 

( x ) =  1 ( l - i ) p ' i + p H = l - F ( m ) ,  (7) 
i = O  

where 
m 

i = l  
F(m) = c ip'i. (9) 

Using the relations ci 
and ( y )  are respectively the same functions as X ( p )  and 9 ( p )  of (5) and (6). 

properties of F(m) can be determined exactly. 

For this distribution, the interesting question is to find a critical sc such that BC = 7r 

. . . qm, it is easy to see from (4)-(6) and (7)-(9) that (x) 

In the following, we first discuss three special distributions of p i  from which the 

(i) p i  =pl / i s ,  i = 1,2 ,  . . . (m -j 00) 
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when s s s c ,  Since 9 ( p )  of (6) (or ( y )  of (8)) is bounded by 0 < 9 ( p ) S  1, B c =  T or 
Bc< 7~ according to whether F ( m )  in equation (7) diverges or converges as m + 00. 

This can be studied using the following theorem (the proof will be given in the 
appendix). 

Theorem. If Z ~ = I  pi converges then F ( m )  converges or diverges according to whether 
2: ipi converges or diverges as m + 00. 

Since Cy=l p i  converges for s > 1, it follows from the theorem that 0,< T for s > 2 

(ii) p i = a / ( a + i ) , a > 0 , i = 1 , 2  , . . . ,  m 
and Bc = IT for 1 < s < 2. So, we find exactly sc = 2. 

In this case, one can prove easily by induction that F ( m )  has the expression 

am =- 
m 

i = l ( a + i ) . . . ( a + m ?  a + l '  
i(i + 1). . . m 

F ( m ) = a  

When m is large, the function 9 ( p )  of (6) can be written as 

where the Euler formula of the gamma function has been used (Abramowitz and 
Stegun 1970). From (7), (10) and ( l l ) ,  we find, to the leading order in m, 8,= 
tan- '[-(l+a)/am] and B,+T as m +CO. 

(iii) p i  = p / m ,  p > 0 ,  i = 1, 2, . . . , m 
This is a mean-field-like model (Wu 1982). In this case F ( m )  can be evaluated directly 
and has the expression 

9 ( p )  of (6) is simply 

9 ( p )  = 1 - 4 d 1  -P/m)". (13) 

In the large m limit, from (7), (12) and (13), we find to the leading order in m, 
8,=tan- ' (p[ l -q0exp(-p)] / [m(l -~-exp(-~) ) ]}  and 6 , + ~  as m+W.  

Finally, when both m and F ( m )  are large, we will derive a general expression of 
F ( m )  for an arbitrary distribution of p i .  From (5) and (7), F ( m )  can be written as 

F ( m ) = ( l - q , ) + ( l - q m q m - l ) + .  .+(1-4mqm-1. * .qzql)* (14) 

Using the identity 

equation (14) can be put in a recursive form 

m m - 1  

n = l  n = l  
F ( m ) =  1 npn- 1 p n + l ~ ( n ) .  
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If pi decays slowly enough that F(m) becomes very large when m is large, (16) 
can be replaced by an integral equation, with x substituting m, 

x - 1  

~ ( x )  = J'; yp(y)dy -1 P ( Y  + ~ ) F ( Y ) ~ Y .  (17) 
1 

Differentiating both sides of (17) with respect to x ,  we have 

F ' ( x ) = x p ( x ) - p ( x ) F ( x  -1).  (18) 

In both cases when F ( x )  is convergent or F ( x )  is divergent in powers of x (as the 
cases discussed above), F(x - 1)  can be replaced by F ( x )  when x is large. So, we have 

F ' ( x )  = x p ( x ) - p ( x ) F ( x ) .  (19) 

(19) can be integrated by the standard method, leading to the expression 

From (20), one can determine F ( x )  for any distribution of p i .  As an example, we 
consider again the case (i) when pi decays as pl/is.  Substitutingp(2) =plz- '  into (20), 
after integrations, we find 

lim F ( x ) = F l ( p l , s ) = -  
x + m  

where T ( a )  and y*(a, z )  are respectively the gamma and incomplete gamma function 
(Abramowitz and Stegun 1970). Since y * ( a , z )  is an analytic function of a and z ,  
while r ( a )  has a simple pole at a = 0, from s - 2  = 0, we find sc = 2. Equation (21) 
is valid when s is greater than but near 2 such that F(m +CO) is large. 9 ( p )  of (6) 
in the m + 00 limit now becomes 

where 

Taking the logarithm of Z ( p l ,  s), we have 

Replacing the double sum in (24) by double integrals, after integrations, we find 

Z(pl,s)=exp{El(-lnpl)-exp[(lnpl)/s]El[[(l -S)  I n ~ l l l s l )  (25) 
where E l ( a )  is the exponential integral (Abramowitz and Stegun 1970). So when 
s 2 2, a, has the expression 

(26) 
where Fl(pl ,s)  and Z(p l , s )  are given by (21) and (25) respectively. From a, one 
can obtain 8,. 

If we use the special distributions of cases (ii) and (iii) in (20), after integrations, 
we again obtain the same results as (10) and (12) to the leading order in m. 

a c ( P 0 ,  Ply s)  = c1 -Fl(Pl ,  s)1/[1- (1 - P o ) Z ( P , ,  s)l 



L406 Letter to the Editor 

The authors are much indebted to Professor F Y Wu for introducing and suggesting 
this problem. They are also very grateful to the referee, Professor Essam, for pointing 
out the theorem and many useful comments and suggestions. 

Appendix. Proof of the theorem 

The convergence condition of the theorem is easily seen by using the relations Fi <pi .  
In order to study the divergence condition, the following inequality is used: 

If Zy=l p i  converges, it can be shown that IIy=2 (1 - p i )  also converges as m + 00 (Arfken 
1970). From the above inequality, it follows that F ( m )  diverges as m +CO whenever 
Xi"=, ipi diverges. 
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